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ON A NON-LOCAL BOUNDARY VALUE PROBLEM FOR

LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

Z. OPLUŠTIL AND J. ŠREMR

Abstract. We establish new efficient conditions for the unique solvability of
a non-local boundary value problem for first-order linear functional differential
equations. Differential equations with argument deviations are also considered
in which case further results are obtained. The results obtained reduce to those
well-known for the ordinary differential equations.

1. Introduction

On the interval [a, b], we consider the problem on the existence and uniqueness
of a solution to the equation

u′(t) = `(u)(t) + q(t) (1.1)

satisfying the non-local boundary condition

h(u) = c, (1.2)

where ` : C([a, b]; R) → L([a, b]; R) and h : C([a, b]; R) → R are linear bounded op-
erators, q ∈ L([a, b]; R), and c ∈ R. By a solution to the problem (1.1), (1.2) we
understand an absolutely continuous function u : [a, b] → R satisfying the equa-
tion (1.1) almost everywhere on the interval [a, b] and verifying also the boundary
condition (1.2).

The question on the solvability of various types of boundary value problems for
functional differential equations and their systems is a classical topic in the theory
of differential equations (see, e.g., [1,3–5,7–9,11–14] and references therein). Many
particular cases of the boundary condition (1.2) are studied in detail (namely, peri-
odic, anti-periodic and multi-point conditions), but only a few efficient conditions
is known in the case, where a general non-local boundary condition is considered.
In the present paper, new efficient conditions are found sufficient for the unique
solvability of the problem (1.1), (1.2). It is clear that the ordinary differential
equation

u′ = p(t)u + q(t), (1.3)
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where p, q ∈ L([a, b]; R), is a particular case of the equation (1.1) and that the
problem (1.3), (1.2) is uniquely solvable if and only if the condition

h
(

e
∫

·
a

p(s)ds
)

6= 0 (1.4)

is satisfied. Below, we establish new solvability conditions for the problem (1.1),
(1.2) in terms of norms of the operators appearing in (1.1) and (1.2) (see Theo-
rems 2.1–2.4). Moreover, we apply these results to the differential equation with
an argument deviation

u′(t) = p(t)u(τ(t)) + q(t) (1.5)

in which p, q ∈ L([a, b]; R) and τ : [a, b] → [a, b] is a measurable function (see The-
orems 2.5 and 2.6), and we show that the assumptions of the statements obtained
reduce to the condition (1.4) in the case, where the equation (1.5) is the ordinary
one (see Remark 2.6). All the main results are formulated in Section 2, their proofs
are given in Section 3.

The following notation is used throughout the paper:

(1) R is the set of all real numbers, R+ = [0, +∞[ .
(2) C([a, b]; R) is the Banach space of continuous functions u : [a, b] → R en-

dowed with the norm ‖u‖C = max{|u(t)| : t ∈ [a, b]}.
(3) L([a, b]; R) is the Banach space of Lebesgue integrable functions p : [a, b] →

R endowed with the norm ‖p‖L =
∫ b

a
|p(s)|ds.

(4) Pab is set of linear operators ` : C([a, b]; R) → L([a, b]; R) mapping the set
C([a, b]; R+) into the set L([a, b]; R+).

(5) PFab is the set of linear functionals h : C([a, b]; R) → R mapping the set
C([a, b]; R+) into the set R+.

2. Main Results

In theorems stated below, we assume that the operator ` admits the representa-
tion ` = `0 − `1 with `0, `1 ∈ Pab. This is equivalent to the fact that ` is not only
bounded, but it is strongly bounded (see, e.g., [6, Ch.VII, §1.2]), i.e., that there
exists a function η ∈ L([a, b]; R+) such that the condition

|`(v)(t)| ≤ η(t)‖v‖C for a. e. t ∈ [a, b] and all v ∈ C([a, b]; R).

is satisfied.
We first consider the case, where the boundary condition (1.2) is understood as

a non-local perturbation of a two-point condition of an anti-periodic type. More
precisely, we consider the boundary condition

u(a) + λu(b) = h0(u) − h1(u) + c, (2.1)

where λ ≥ 0, h0, h1 ∈ PFab, and c ∈ R. We should mention that there is no loss of
generality in assuming this, because an arbitrary functional h can be represented
in the form

h(v)
def
= v(a) + λv(b) − h0(v) + h1(v) for v ∈ C([a, b]; R).

Note also that we have studied the problem (1.1), (2.1) with λ < 0 in the paper [10].
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Theorem 2.1. Let h0(1) < 1 + λ + h1(1) and ` = `0 − `1, where `0, `1 ∈ Pab. Let,

moreover,

λ
(

λ − h0(1)
)

≤
(

1 + h1(1)
)2

(2.2)

and either the conditions

‖`0‖ < 1 − h0(1) −
(

λ + h1(1)
)2

, (2.3)

‖`1‖ < 1 − λ − h1(1) + 2
√

1 − h0(1) − ‖`0‖ , (2.4)

be satisfied, or the conditions

‖`0‖ ≥ 1 − h0(1) −
(

λ + h1(1)
)2

, (2.5)

‖`0‖ +
(

λ + h1(1)
)

‖`1‖ < 1 + λ − h0(1) + h1(1), (2.6)
(

1 + h1(1)
)

‖`0‖ + λ‖`1‖ < 1 + λ − h0(1) + h1(1) (2.7)

hold. Then the problem (1.1), (2.1) has a unique solution.

Remark 2.1. Geometrical meaning of the assumptions of Theorem 2.1 is illustrated
on Fig. 2.1.
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‖`0‖

‖`1‖

x1 x2

y1

y2

x1 = 1 +
1 + h1(1)

λ

x2 = 1 −

1 + h1(1)

λ
+ 2

√

1 −

1

λ
h0(1)

y1 = 1 −

1

λ
h0(1) −
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Remark 2.2. Let ` = `0−`1 with `0, `1 ∈ Pab. Define the operator ϕ : C([a, b]; R) →
C([a, b]; R) by setting

ϕ(w)(t)
def
= w(a + b − t) for t ∈ [a, b], w ∈ C([a, b]; R).

For i = 0, 1, we put

˜̀
i(w)(t)

def
= `i(ϕ(w))(a + b − t) for a. e. t ∈ [a, b] and all w ∈ C([a, b]; R)

and

q̃(t)
def
= −q(a + b − t) for a. e. t ∈ [a, b],

h̃(w)
def
= h(ϕ(w)) for w ∈ C([a, b]; R).

It is clear that if u is a solution to the problem (1.1), (1.2) then the function

v
def
= ϕ(u) is a solution to the problem

v′(t) = ˜̀
1(v)(t) − ˜̀

0(v)(t) + q̃(t), h̃(v) = c, (2.8)

and vice versa, if v is a solution to the problem (2.8) then the function u
def
= ϕ(v)

is a solution to the problem (1.1), (1.2).

Using the transformation described in the previous remark, we can immediately
derive from Theorem 2.1 the following statement.

Theorem 2.2. Let λ > 0, h0(1) < 1+λ+h1(1), and ` = `0−`1, where `0, `1 ∈ Pab.

Let, moreover,

1 − h0(1) ≤
(

λ + h1(1)
)2

(2.9)

and either the conditions

‖`1‖ < 1 −
1

λ
h0(1) −

(

1 + h1(1)
)2

λ2
, (2.10)

‖`0‖ < 1 −
1

λ

(

1 + h1(1)
)

+ 2

√

1 −
1

λ
h0(1) − ‖`1‖ (2.11)

be satisfied, or

‖`1‖ ≥ 1 −
1

λ
h0(1) −

(

1 + h1(1)
)2

λ2
(2.12)

and the conditions (2.6) and (2.7) hold. Then the problem (1.1), (2.1) has a unique

solution.

Remark 2.3. Geometrical meaning of the assumptions of Theorem 2.2 is illustrated
on Fig. 2.2.

Remark 2.4. It is easy to verify that, for any λ ≥ 0 and h0, h1 ∈ PFab, at least one
of the conditions (2.2) and (2.9) is fulfilled and thus Theorems 2.1 and 2.2 cover all
cases.

Theorems 2.1 and 2.2 yield

Corollary 2.1. Let λ > 0, h0(1) < 1+λ+h1(1) and ` = `0−`1, where `0, `1 ∈ Pab.

If, moreover, the conditions (2.2), (2.6), (2.7), and (2.9) are fulfilled, then the

problem (1.1), (2.1) has a unique solution.
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In the case, where λ = 0 in (2.1), we consider the problem

u′(t) = `(u)(t) + q(t), u(a) = h0(u) − h1(u) + c (2.13)

and from Theorem 2.1 we get

Corollary 2.2. Let h0(1) < 1 + h1(1) and ` = `0 − `1, where `0, `1 ∈ Pab. Let,

moreover, either the conditions

‖`0‖ < 1 − h0(1) − h1(1)2, (2.14)

‖`1‖ < 1 − h1(1) + 2
√

1 − h0(1) − ‖`0‖ , (2.15)

be satisfied, or the conditions

1 − h0(1) − h1(1)2 ≤ ‖`0‖ < 1 −
h0(1)

1 + h1(1)
, (2.16)

‖`0‖ + h1(1)‖`1‖ < 1 − h0(1) + h1(1) (2.17)

hold. Then the problem (2.13) has a unique solution.

Now we give two statements dealing with the unique solvability of the problem
(1.1), (1.2). We assume in Theorems 2.3 and 2.4 that h = h+ − h− with h+, h− ∈
PFab. There is no loss of generality in assuming this, because every linear bounded
functional h : C([a, b]) → R can be expressed in such a form.

Theorem 2.3. Let h(1) > 0, h = h+ − h− with h+, h− ∈ PFab, and ` = `0 − `1,

where `0, `1 ∈ Pab. Let, moreover, the conditions

‖`0‖ + h+(1)‖`1‖ < h(1)

and

h+(1)‖`0‖ + ‖`1‖ < h(1)

be fulfilled. Then the problem (1.1), (1.2) has a unique solution.

Theorem 2.4. Let h(1) < 0, h = h+ − h− with h+, h− ∈ PFab, and ` = `0 − `1,

where `0, `1 ∈ Pab. Let, moreover, the conditions

‖`0‖ + h−(1)‖`1‖ < |h(1)|

and

h−(1)‖`0‖ + ‖`1‖ < |h(1)|

be fulfilled. Then the problem (1.1), (1.2) has a unique solution.

Remark 2.5. Geometrical meaning of the assumptions of Theorems 2.3 and 2.4 is
illustrated, respectively, on Fig. 2.3 and Fig. 2.4.

It is clear that, from Theorems 2.1–2.4, we can immediately obtain conditions
guaranteeing the unique solvability of the problem (1.5), (1.2), whenever we replace

the terms ‖`0‖ and ‖`1‖ appearing therein, respectively, by the terms
∫ b

a
[p(s)]+ds

and
∫ b

a
[p(s)]−ds. In what follows, we establish two theorems, which can be also

derived from Theorems 2.3 and 2.4, and which require that the deviation τ(t) − t

is “small” enough. In order to simplify formulation of statements, we put

p0(t) = σ(t)[p(t)]+

∫ τ(t)

t

[p(s)]+e
∫

τ(s)
t

p(ξ)dξds+
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+ σ(t)[p(t)]−

∫ τ(t)

t

[p(s)]−e
∫

τ(s)
t

p(ξ)dξds+

+
(

1 − σ(t)
)

[p(t)]+

∫ t

τ(t)

[p(s)]−e
∫

τ(s)
t

p(ξ)dξds+

+
(

1 − σ(t)
)

[p(t)]−

∫ t

τ(t)

[p(s)]+e
∫

τ(s)
t

p(ξ)dξds for a. e. t ∈ [a, b] (2.18)

and

p1(t) = σ(t)[p(t)]+

∫ τ(t)

t

[p(s)]−e
∫

τ(s)
t

p(ξ)dξds+

+ σ(t)[p(t)]−

∫ τ(t)

t

[p(s)]+e
∫

τ(s)
t

p(ξ)dξds+

+
(

1 − σ(t)
)

[p(t)]+

∫ t

τ(t)

[p(s)]+e
∫

τ(s)
t

p(ξ)dξds+

+
(

1 − σ(t)
)

[p(t)]−

∫ t

τ(t)

[p(s)]−e
∫

τ(s)
t

p(ξ)dξds for a. e. t ∈ [a, b], (2.19)

where

σ(t) =
1

2

(

1 + sgn(τ(t) − t)
)

for a. e. t ∈ [a, b].

Moreover, having h+, h− ∈ PFab, we denote

µ0 = h+
(

e
∫ ·

a
p(s)ds

)

and µ1 = h−

(

e
∫ ·

a
p(s)ds

)

. (2.20)

Theorem 2.5. Let h = h+ − h− with h+, h− ∈ PFab. Let, moreover, µ0 > µ1 and

the conditions
∫ b

a

p0(s)ds + µ0

∫ b

a

p1(s)ds < µ0 − µ1
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and

µ0

∫ b

a

p0(s)ds +

∫ b

a

p1(s)ds < µ0 − µ1

be fulfilled, where the functions p0, p1 and the numbers µ0, µ1 are defined, respec-

tively, by the relations (2.18), (2.19) and (2.20). Then the problem (1.5), (1.2) has

a unique solution.

Theorem 2.6. Let h = h+ − h− with h+, h− ∈ PFab. Let, moreover, µ0 < µ1 and

the conditions
∫ b

a

p0(s)ds + µ1

∫ b

a

p1(s)ds < µ1 − µ0

and

µ1

∫ b

a

p0(s)ds +

∫ b

a

p1(s)ds < µ1 − µ0

be fulfilled, where the functions p0, p1 and the numbers µ0, µ1 are defined, respec-

tively, by the relations (2.18), (2.19) and (2.20). Then the problem (1.5), (1.2) has

a unique solution.

Remark 2.6. Theorems 2.5 and 2.6 yield, in particular, that the problem (1.3),
(1.2) is uniquely solvable if µ0 6= µ1, i. e., if the condition (1.4) holds. However,
it is well-known that, in the framework of the ordinary differential equations, the
condition (1.4) is not only sufficient, but also necessary for the unique solvability
of the problem (1.3), (1.2).

3. Proofs

It is well-known that the linear problem has the Fredholm property, i. e., the
following assertion holds (see, e. g., [2,4]; in the case, where the operator ` is strongly
bounded, see also [1, 14]).

Lemma 3.1. The problem (1.1), (1.2) has a unique solution for an arbitrary q ∈
L([a, b]; R) and every c ∈ R if and only if the corresponding homogeneous problem

u′(t) = `(u)(t), h(u) = 0 (3.1)

has only the trivial solution.

Proof of Theorem 2.1. According to Lemma 3.1, to prove the theorem it is sufficient
to show that the homogeneous problem

u′(t) = `0(u)(t) − `1(u)(t), (3.2)

u(a) + λu(b) = h0(u) − h1(u) (3.3)

has only the trivial solution. Assume that, on the contrary, u is a nontrivial solution
to the problem (3.2), (3.3).

First suppose that u changes its sign. Put

M = max{u(t) : t ∈ [a, b]}, m = −min{u(t) : t ∈ [a, b]}, (3.4)

and choose tM , tm ∈ [a, b] such that

u(tM ) = M, u(tm) = −m. (3.5)
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It is clear that
M > 0, m > 0. (3.6)

We can assume without loss of generality that tM < tm. The integration of the
equality (3.2) from tM to tm, from a to tM , and from tm to b, in view of (3.4),
(3.5), and the assumption `0, `1 ∈ Pab, yields

M + m =

∫ tm

tM

`1(u)(s) ds −

∫ tm

tM

`0(u)(s) ds ≤ MB1 + mA1, (3.7)

M − u(a) + u(b) + m =

∫ tM

a

`0(u)(s) ds −

∫ tM

a

`1(u)(s) ds+

+

∫ b

tm

`0(u)(s) ds −

∫ b

tm

`1(u)(s) ds ≤ MA2 + mB2,

(3.8)

where

A1 =

∫ tm

tM

`0(1)(s) ds, A2 =

∫ tM

a

`0(1)(s) ds +

∫ b

tm

`0(1)(s) ds,

B1 =

∫ tm

tM

`1(1)(s) ds, B2 =

∫ tM

a

`1(1)(s) ds +

∫ b

tm

`1(1)(s) ds.

On the other hand, from the boundary condition (3.3), in view of the relations
(3.5), (3.6) and the assumption h0, h1 ∈ PFab, we get

u(a) − u(b) = −
(

1 + λ
)

u(b) + h0(u) − h1(u) ≤
(

1 + λ
)

m + Mh0(1) + mh1(1)

and

u(a) − u(b) =
(

1 +
1

λ

)

u(a) −
1

λ
h0(u) +

1

λ
h1(u) ≤

≤
(

1 +
1

λ

)

M + m
1

λ
h0(1) + M

1

λ
h1(1).

Hence, it follows from the relation (3.8) that

M − λm ≤ MA2 + mB2 + Mh0(1) + mh1(1) (3.9)

and

m −
1

λ
M ≤ MA2 + mB2 + m

1

λ
h0(1) + M

1

λ
h1(1). (3.10)

We first assume that ‖`0‖ ≥ 1. Then the conditions (2.6) and (2.7) are supposed
to be satisfied. It is clear that the inequality (2.7) implies λ > 0 and ‖`1‖ <

1 − 1
λ
h0(1) and thus

B1 < 1, B2 < 1 −
1

λ
h0(1).

Using these inequalities and the relations (3.6), from (3.7) and (3.10) we obtain

0 < M(1 − B1) ≤ m(A1 − 1),

0 < m
(

1 −
1

λ
h0(1) − B2

)

≤ M
(

A2 +
1

λ

(

1 + h1(1)
)

)

,

which yields that

(1 − B1)
(

1 −
1

λ
h0(1) − B2

)

≤ (A1 − 1)
(

A2 +
1

λ

(

1 + h1(1)
)

)

. (3.11)
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Obviously,

(1 − B1)
(

1 −
1

λ
h0(1) − B2

)

≥ 1 −
1

λ
h0(1) − ‖`1‖. (3.12)

On the other hand, by virtue of (2.2), it follows from the inequality (2.7) that

‖`0‖ < 1 +
λ − h0(1)

1 + h1(1)
≤ 1 +

1

λ

(

1 + h1(1)
)

,

and thus we obtain

(A1 − 1)
(

A2 +
1

λ

(

1 + h1(1)
)

)

≤ (‖`0‖ − 1)A2 + (A1 − 1)
1

λ

(

1 + h1(1)
)

≤

≤
1

λ

(

1 + h1(1)
)

(A1 + A2 − 1) ≤
1

λ

(

1 + h1(1)
)

(‖`0‖ − 1).

(3.13)

Now, from (3.11), (3.12), and (3.13) we get

1 + λ − h0(1) + h1(1) ≤
(

1 + h1(1)
)

‖`0‖ + λ‖`1‖.

which contradicts the inequality (2.7).
Now assume that ‖`0‖ < 1. Then, in view of the relations (3.6), the inequalities

(3.7) and (3.9) yield

0 < m
(

1 − A1

)

≤ M
(

B1 − 1
)

,

M
(

1 − h0(1) − A2

)

≤ m
(

B2 + λ + h1(1)
)

and thus we get ‖`1‖ ≥ B1 > 1 and
(

1 − A1

)(

1 − h0(1) − A2

)

≤
(

B1 − 1
)(

B2 + λ + h1(1)
)

. (3.14)

Obviously,
(

1 − A1

)(

1 − h0(1) − A2

)

≥ 1 − h0(1) − ‖`0‖. (3.15)

If ‖`0‖ ≥ 1−h0(1)−
(

λ+h1(1)
)2

then the conditions (2.6) and (2.7) are supposed
to be satisfied. Therefore, we obtain from the inequality (2.6) that ‖`1‖ ≤ 1 + λ +
h1(1) and thus it is easy to verify that

(

B1 − 1
)(

B2 + λ + h1(1)
)

≤ (‖`1‖ − 1)B2 + (B1 − 1)(λ + h1(1)) ≤

≤
(

λ + h1(1)
)(

B1 + B2 − 1
)

≤
(

λ + h1(1)
)(

‖`1‖ − 1
)

.
(3.16)

Now, it follows from (3.14), (3.15), and(3.16) that

1 + λ − h0(1) + h1(1) ≤ ‖`0‖ +
(

λ + h1(1)
)

‖`1‖,

which contradicts the inequality (2.6).

If ‖`0‖ < 1 − h0(1) −
(

λ + h1(1)
)2

then, taking the above-mentioned condition
‖`1‖ > 1 and the obvious inequality

(

B1 − 1
)(

B2 + λ + h1(1)
)

≤
1

4

(

‖`1‖ − 1 + λ + h1(1)
)2

into account, from the relations (3.14) and (3.15) we get

1 − λ − h1(1) + 2
√

1 − h0(1) − ‖`0‖ ≤ ‖`1‖,

which contradicts the inequality (2.4).
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Now suppose that u does not change its sign. Then, without loss of generality,
we can assume that

u(t) ≥ 0 for t ∈ [a, b]. (3.17)

Put

M0 = max
{

u(t) : t ∈ [a, b]
}

, m0 = min
{

u(t) : t ∈ [a, b]
}

, (3.18)

and choose tM0 , tm0 ∈ [a, b] such that

u(tM0) = M0, u(tm0) = m0. (3.19)

It is clear that
M0 > 0, m0 ≥ 0, (3.20)

and either
tM0 ≥ tm0 , (3.21)

or
tM0 < tm0 . (3.22)

Notice that if the assumptions of the theorem are fulfilled, then both inequalities

A +
(

λ + h1(1)
)

B < 1 + λ − h0(1) + h1(1) (3.23)

and
(

1 + h1(1)
)

A + λB < 1 + λ − h0(1) + h1(1) (3.24)

hold, where A = ‖`0‖ and B = ‖`1‖.
The integration of the equality (3.2) from a to tM0 and from tM0 to b, in view

of the relations (3.17), (3.18), and (3.19) and the assumption `0, `1 ∈ Pab, yields

M0 − u(a) =

∫ tM0

a

`0(u)(s) ds −

∫ tM0

a

`1(u)(s) ds ≤ M0A

and

M0 − u(b) =

∫ b

tM0

`1(u)(s) ds −

∫ b

tM0

`0(u)(s) ds ≤ M0B.

The last two inequalities yield

M0(1 + λ) − u(a) − λu(b) ≤ M0(A + λB)

and thus, using (3.3), (3.18), and the assumption h0, h1 ∈ PFab, we get

m0h1(1) ≤ M0

(

A + λB + h0(1) − 1 − λ
)

. (3.25)

First suppose that (3.21) holds. The integration of the equality (3.2) from tm0

to tM0 , in view of (3.17), (3.18), and (3.19) and the assumption `0, `1 ∈ Pab, results
in

M0 − m0 =

∫ tM0

tm0

`0(u)(s) ds −

∫ tM0

tm0

`1(u)(s) ds ≤ M0A,

i. e.,
M0

(

1 − A
)

≤ m0.

From this inequality and (3.25) we obtain
(

1 + h1(1)
)

A + λB ≥ 1 + λ − h0(1) + h1(1),

which contradicts the inequality (3.24).
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Now assume that (3.22) holds. The integration of the equality (3.2) from tM0 to
tm0 , in view of (3.17), (3.18), and (3.19) and the assumption `0, `1 ∈ Pab, yields

M0 − m0 =

∫ tm0

tM0

`1(u)(s) ds −

∫ tm0

tM0

`0(u)(s) ds ≤ M0B,

i. e.,

M0(1 − B) ≤ m0.

The last inequality, together with (3.25), results in

A +
(

λ + h1(1)
)

B ≥ 1 + λ − h0(1) + h1(1),

which contradicts the inequality (3.23).
The contradictions obtained prove that the homogeneous problem (3.2), (3.3)

has only the trivial solution. �

Proof of Theorem 2.2. The assertion of the theorem can be derived from Theo-
rem 2.1 using the transformation described in Remark 2.2. �

Proof of Corollary 2.1. The validity of the corollary follows immediately from The-
orems 2.1 and 2.2. �

Proof of Corollary 2.2. It is clear that the assumptions of Theorem 2.1 with λ = 0
are satisfied. �

Proof of Theorem 2.3. Let the functionals h0 and h1 be defined by the formulae

h0(v)
def
= v(a) + h−(v), h1(v) = h+(v) for v ∈ C([a, b]; R).

By virtue of Corollary 2.2, the problem (1.1), (1.2) is uniquely solvable under the
assumptions

‖`0‖ < 1 −
1 + h−(1)

1 + h+(1)
, ‖`0‖ + h+(1)‖`1‖ < h+(1) − h−(1).

Moreover, using the transformation described in Remark 2.2, it is not difficult to
verify that the problem (1.1), (1.2) is uniquely solvable also under the assumptions

‖`1‖ < 1 −
1 + h−(1)

1 + h+(1)
, ‖`1‖ + h+(1)‖`0‖ < h+(1) − h−(1).

Combining these two cases we obtain the required assertion. �

Proof of Theorem 2.4. The validity of the theorem follows from Theorem 2.3 and
fact that the problem

u′(t) = `(u)(t) + q(t), h(u) = c

has a unique solution for every q ∈ L([a, b]; R) and c ∈ R if and only if the problem

v′(t) = `(v)(t) + q(t), −h(v) = c

has a unique solution for every q ∈ L([a, b]; R) and c ∈ R. �
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Proof of Theorem 2.5. According to Lemma 3.1, to prove the theorem it is sufficient
to show that the homogeneous problem

u′(t) = p(t)u(τ(t)), h(u) = 0 (3.26)

has only the trivial solution.
Let u be an arbitrary solution to the problem (3.26). Then it is easy to verify

by direct calculation that the function

v(t) = u(t)e−
∫

t

a
p(s)ds for t ∈ [a, b]

is a solution to the problem

v′(t) = `(v)(t), h̃(v) = 0, (3.27)

where the operators ` and h̃ are defined by the relations

`(w)(t)
def
= p(t)

∫ τ(t)

t

p(s)e
∫

τ(s)
t

p(ξ)dξw(τ(s))ds

for a. e. t ∈ [a, b] and all w ∈ C([a, b]; R)

and

h̃(w)
def
= h

(

w(·)e
∫ ·

a
p(s)ds

)

for w ∈ C([a, b]; R).

The operator ` can be expressed in the form ` = `0 − `1, where `0, `1 ∈ Pab are
such that `0(1) ≡ p0 and `1(1) ≡ p1 and, moreover, the functional h̃ admits the

representation h̃ = h̃+ − h̃− in which h̃+, h̃− ∈ PFab are such that h̃+(1) = µ0 and

h̃−(1) = µ1.
Consequently, by virtue of Theorem 2.3, the problem (3.27) has only the trivial

solution and thus u ≡ 0. This means that the problem (3.26) has only the trivial
solution. �

Proof of Theorem 2.6. The proof is analogous to those of Theorem 2.5, only The-
orem 2.4 must be used instead of Theorem 2.3. �
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